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SUMMARY 

The three-dimensional Navier-Stokes equations for viscous incompressible fluids are discretized on 
staggered or non-staggered grids. The system of finite-difference equations is solved by a multi-grid 
method. The method and some possible sources of difficulties and their remedies are described. The 
numerical algorithm has been applied to the computations of flows in ducts for a range of Reynolds 
numbers up to 2000. As outflow boundary conditions, either the fully developed flow profile (Dirichlet 
condition) or parabolic conditions have been applied. The multi-grid method has a fast rate of 
convergence (with both types of boundary conditions), and it is not sensitive to the number of mesh 
points and the Reynolds number. The numerical solution, using parabolic boundary conditions, is 
insensitive to the location of the outflow boundary, even for large Reynolds numbers, in contrast to the 
solution with Dirichlet boundary conditions. 
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1. INTRODUCTION 

The numerical solution o f  the three-dimensional incompressible Navier-Stokes (N-S) equa- 
tions has been considered to be a difficult one. The difficulties arise because the governing 
equations consist of a coupled elliptic system which is not linear for non-vanishing Reynolds 
numbers. Numerical solutions within a reasonable computational effort could have been 
achieved by simplifying assumptions. For certain three-dimensional problems a global 
parabol izat i~nl~ of the flow field may be assumed. The parabolization method which has 
been developed4 is based on the solution of the two-dimensional N-S equations for each 
time-like step. The two-dimensional N-S solver uses a multi-grid (MG) method which has 
been generalized to three dimensions, and this is presented here. For flows in ducts the 
method of parabolization is most natural since the axial flow component dominates (almost 
everywhere) over the transversal components. By the parabolicity assumption, the computa- 
tional effort and computer memory can be reduced. On the other hand, the validity of the 
assumptions and the resulting accuracy of the method is poor whenever the scale of the 
variation in the main flow direction is not large. 

The MG methods which are described here, for the solution of the full three-dimensional 
N-S equations, require the same order of computational effort as the parabolization method 
(with the two-dimensional N-S MG-solver). Furthermore, the solutions are valid throughout 
the flow field, provided that proper boundary conditions are imposed. 
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In this work we discuss the finite-difference approximation to the governing equations on 
staggered (SG) and non-staggered grids (NSG). The finite differences on NSG are a 
combination of forward and backward differences in order to maintain the ellipticity of the 
system in some sense.5 The MG solution procedure and the relaxation steps are described 
shortly. We discuss also a proper transfer of the dependent variables (and the interaction) 
among the grids, in such a way that certain integral relations are independent of the grid 
representation. 

The flow in straight square ducts is computed for a range of Reynolds numbers (Re) up to 
2000. As outflow boundary conditions, we use either a fully developed flow profile (Dirichlet 
conditions) or conditions which result from some scale assumptions near the outflow 
boundary (parabolic conditions). With Dirichlet conditions, the solution may depend on the 
location of the outflow boundary and the Reynolds number (Re). When Dirichlet conditions 
are used together with large Re, one has to place the fully developed flow boundary far away 
from the entrance. This can be done by stretching the co-ordinate in the main flow direction. 
The effects of such co-ordinate stretching on the solution and the rate of convergence are 
discussed. We show how a modified relaxation scheme (successive plane relaxations4PLR) 
can improve the convergence for highly stretched co-ordinates. The assumptions which are 
used to construct the relaxation schemes are stated and the difficulties which might result 
from these assumptions are discussed. 

The problems which are associated with the Dirichlet conditions are eliminated by 
applying parabolic conditions. Our computational results show that the solution is not 
sensitive to the location of the outflow boundary, even for the largest Re which has been 
tested. Furthermore, the parabolic boundary condition can be incorporated into the MG 
solution procedure with an efficiency similar to the MG solver with Dirichlet boundary 
conditions. 

2. THE GOVERNING EQUATIONS 

It is assumed that the steady state flow of an incompressible fluid in three space dimensions is 
described by the following system of equations: 

4, + %, + u,, -Re (uy,  + u% + wu,)- p, = 0 

v,, + vyy + u,, -Re (uv, + vu, + wv,) - py = 0 

w, + w,, + w,, -Re (uw, + vwy + ww,) - pz = 0 

u, + v, + w, = 0 

(1) 

(2) 

(3) 

(4) 

where u, v and w are the dimensionless velocity components in the x, y and z directions, 
respectively; p is the dimensionless pressure and Re is the Reynolds number. 

The system of equations (1)-(4) is elliptic. It has a solution if boundary conditions are 
specified on all the boundaries. It is enough, for example, if the velocity vector q = (u, u, w) is 
given on all the boundaries, provided that the boundary conditions satisfy the condition that 
the same amount of fluid enters and leaves the domain R. That is 

q = g(x, y, z )  on dR (the boundary of Q) 

is given. By equation (4) 

J J  Jv- q d O =  J Jg . ds 
n a n  
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then 

[Jg.  ds= 0 

541 

JO. 

The system of equations (1)-(4) with the boundary condition (5) and (6) results in a solution 
which is determined up to an additive constant in the pressure. 

The exact form of the velocity vector, at the boundaries, is not always known. An 
analytical expression for the velocity vector is known only in special cases (solid boundaries, 
at ‘infinity’, etc.). For channel flows, the downstream velocity vector can be written in a 
closed form if the outflow boundary is located at ‘infinity’. ( u  = IJ = 0, and w is the solution of 
w, + w,, = C; C is chosen so that the total mass flux into the region vanishes (6).) If the 
computational boundary is placed at a relatively short distance then the solution may become 
non-physical for large Re. 

To reduce the computational domain, several authors use ‘less restrictive’ boundary 
conditions at the outflow boundary (see Reference 7 and the references there). These 
boundary conditions state that the flow gradients in the main flow direction vanish (Neumann 
conditions). Here, we assume that near the outflow boundary the w-component varies more 
slowly in the main flow direction than in the transverse plane. If the scale of the transverse 
variations is of unit length then we denote the scale of variation in the z direction by 6. It is 
also assumed that the transverse components u and IJ are smaller than w and that they can 
be rescaled by 0. When the z co-ordinate is rescaled (locally by 6) and the rescaled 
transverse components are introduced into the governing equations, one obtains terms which 
are of different orders. When 6 >> 1 and << 1, by neglecting all the higher order terms, one 
obtains the following equations which are valid locally: 

w, + w,, - Re (uw, + vwy + ww,) - (p,), = 0 

u,x + y, -Re (uu, +vul, + wuJ- 6, = 0 

IJ, + vyy -Re (uv, +my + wvZ)-6, = 0 

u, + v, + w, = 0 

and 

where p ( x ,  y, z )  = p , ( z ) + @ ( x ,  y), and zi and z, are the locations of the inflow and the 
outflow boundaries, respectively. 

The system of equations above can be applied at the outflow boundary provided that the 
scales assumptions are reasonable. Equations (7)-(11) are parabolic with a time-like z 
direction. In a recent work’’ we have compared the effect of the type of outflow boundary 
conditions on two-dimensional channel flows. It has been found that parabolic boundary 
conditions are much less sensitive than the boundary conditions of Dirichlet or Neumann 
types. Further, we have found that it is possible to use a simplified form of equations 
(7)-(11)’ by assuming u = v = 0. w, at the outflow boundary, can be computed by equation 
(7) if (prn)= is given. The value of (p,,,), is adjusted, via a Newton-like method, in such a way 
that the resulting outflow velocity profile, w, satisfies both equations (7) and (11). Since w 
depends on the flow upstream of the boundary, it has to be updated during the solution 
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procedure. In the following, we apply at the outflow boundary the velocity vector which 
computed from either the parabolic equations or the free stream (Dirichlet) conditions. 

When Dirichlet conditions are used it is natural to stretch the co-ordinates in the 
direction: z = z((;). 

With such a transformation the continuity equation becomes: 

u, + 0, + W,/Z, = 0 

is 

2 

which should be written in conservation law form in order to ensure that the compatibility 
condition is satisfied. That is, 

gives 
(zyu), + b,4, + wt; = 0 (12) 

where 
q' = (214 zpu, w) 
v1 = (8x9 ay, a,> 

dSZ1 = dx dy dc 

This conservative form should be preserved also when the equations are discretized in order 
to secure a solution to the system (see Section 4.2). 

3. FINITE-DIFFERENCE APPROXIMATIONS 

Several authors have used finite differences on staggered grids (SG) to approximate the 
spatial derivatives of the Navier-Stokes equations. The original method of Harlow and 
Welch8 for the solution of the time dependent Navier-Stokes equations (the MAC method) 
uses such grids. A similar grid has been also used by Brandt and Dinar3 for the multi-grid 
solution of the Stokes and the Navier-Stokes equations in two space dimensions. A 
finite-difference approximation on a non-staggered grid (NSG) has been used for two- 
dimensional problems by Fuchs.' In this work we have used both the SG and the NSG 
formulations for three-dimensional flows. 

In both formulations the computational domain is subdivided into small cubes with face 
sizes h,, hy and hc. The dependent variables u, v, w and p are defined at different locations 
on the faces and inside the basic cubes for the SG and the NSG formulations. On the NSG, 
all dependent variables are defined at the corners of the basic cubes, whereas on the SG each 
velocity component is defined at the centre of that face of the basic cube which is normal to 
the corresponding direction. The pressure is defined at the centre of the cube. 

On the staggered grid, all the derivatives, except for the convective terms for large 
Reynolds numbers, are approximated by second-order accurate central differences. The 
resulting approximation is elliptic in some sense.3 With the following notation: 

a x  = [Oijl -Oi-~j~l/k 
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and 

The finite-difference system can be written as: 

where 

Lax., a,z, a, 0 I 
@ = (u, I), w, p)’ and R = (0, 0, 0, O)T 

The above staggered grid finite-difference equations may be interpreted as being equivalent 
to a finite volume formulation. The governing equations are written then in form of 
conservation laws and these can be satisfied on any sub-volume of the domain, and in 
particular for each basic computational cube. The resulting algebraic equations are exactly 
the same as those obtained by the SG finite-difference approximations. 

On the non-staggered grid, a combination of forward and backward finite differences is 
used to approximate first derivatives. We introduce the following notation: 

aa. = { :z a? = “1. - O.-J/k 
if az=O 

if a<O 

Q = v2 - Re zi(z,uax + z,va, + wa,) 

The finite-difference approximation to equations (1)-(4) on a NSG can also be written as: 

& @ = R  (14) 
where 

Q O  

a:z, a;z, 

@ = (u, I), w, p)’ and R = (0, 0, 0, 0)’ 

The system of equations, as its two-dimensional counterpart,’ is elliptic in the sense that for 
any (non-constant) Fourier-component of the error, the residual is non-vanishing. 

It should be pointed out that interchanging the forward and backward differences in 
system (14) will also lead to an elliptic system, with the same (formal) first-order accuracy. 
Using second-order accurate central differences leads to a quasi-elliptic system,’ for which at 
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least one (high-frequency) component of the error would always result in a vanishing residual 
independent of the amplitude of that error component. These spurious error components can 
be filtered out by taking some averages, but then the resulting accuracy would be still of the 
first order. In this work, formulation (14) is used for non-staggered grid computations. 

4. THE SOLUTION PROCEDURE 

The multi-grid (MG) method has been used for the fast solution of finite-difference 
equations. Here, we describe the basic steps and ideas of MG techniques. More details of the 
basic MG method for elliptic and mixed elliptic-hyperbolic equations as well as systems of 
equations can be found in References 2, 3 and 9. Further, we discuss several aspects of the 
MG method which are of importance, especially when the mesh spacing is non-uniform. 

4.1. Multi-grid cycling procedure 

The idea of multi-grid methods (MGM) is based upon the properties of (some standard) 
relaxation procedures. The error of an approximation to the solution of the finite-diff erence 
equations can be decomposed into its (finite number of) Fourier components. The shortest 
wavelengths (high frequencies) which can be represented on a given net are of the same 
order as the mesh size. Many usual relaxation methods have the property that they reduce 
the amplitude of the high frequency error components (which have only short range effects) 
while low frequencies (slowly varying global errors) are eliminated slowly. The MGM uses a 
sequence of grids and, usually, only one relaxation operator to eliminate efficiently a 
corresponding sequence of error components. The dependent variables and the equations are 
transferred among the grids so that the sequence of approximations may be regarded as part 
of the limiting procedure in approximating the differential equations by finite-diff erence 
equations. 

For the MG solution procedure, of equations (13) or (14), one defines a sequence of M 
grids with mesh spacings hl, h2, . . . , hM such that the finest grid has the spacing h,. Usually 
hk-,/hk = 2( 1 < k S M ) .  The MG cycling procedure for the solution of (13) or (14), on a 
sequence of M grids, is as follows: 

On each grid k ( l  =s k S M )  one has to solve, approximately, (i.e. to smooth out the errors 
of) the problem which is denoted by 

Lkqk = R k  

where Lk is a finite-difference approximation to the differential operator, on a grid k ;  c p k  
and R k  are defined below. qM (the current finest grid approximation) and RM (the 
right-hand side on the finest grid) are given. 

Then for any k the following is performed: 
I. Relaxation sweeps are carried out on the grid k until the convergence is too slow. 
Than either 

11. The problem is transferred to a coarser grid ( k  - 1). The transfers include the dependent 
and the residuals, such variables (Full Approximation Storage, FAS273)q k - l  = 1E-l~ 

that the new right-hand side is given by: 

R k-l = Lk_lI2-'cpk + I:-'(Rk - L k c p k )  (15) 
where I:-' is the transfer (interpolation or restriction operator) from the fine ( k )  to the 
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coarse grid ( k  - 1) (see Section 4.3). Step I. is repeated on the transferred problem on 
grid k -1; 

or if convergence to some accuracy has been obtained, then: 
111. The correction is transferred (via some interpolation) to a finer grid ( k + l ) .  These 

The procedure ends when the prescribed accuracy is attained on the finest grid ( k  = M ) .  
The basic MG scheme can be a fixed one by determining, a priori, the number of 

relaxation sweeps and the sequence of transfer among the grids. The gains obtained by a 
more sophisticated control are marginal or none. 

corrections are smoothed out by some relaxation sweeps (step I). 

4.2. The relaxation procedure 

The relaxation of the system (13) or (14) is done in steps. First, the three momentum 
equations are relaxed successively, pointwise (by a Gauss-Seidel technique). This step is 
straightforward and is not described here. In the second step the continuity equation is 
relaxed, pointwise, by changing all the dependent variables in a certain neighbourhood of 
each point, such that the residual of the momentum equations will remain unchanged. This 
can be achieved by defining a correction function x and from it correction velocity 
components Aq = (Au, Av, Aw) and correction pressure, Ap, in the following manner: 

A. (SG) AU = zsaxx: AV = zrdyx; Aw =drx 
(16) 

(17) 

Ap = Qx 
B. (NSG) Au = z,azx; Av = z,&x; Aw =aFx 

AP = Qx 
For both cases the changes in the residuals of the momentum equations can be approximated 
by: 

QAq - grad Ap = 0 

provided that 

Q grad = grad Q 

By inserting relations (16) and (17) into the respective approximation to the continuity 
equation, one obtains an equation for x, i.e. 

(x;a;+ .;a; + a;>x = -[(zcu), + (zcv), + WJ (18) 

To solve equation (18) one has to specify boundary conditions on x. From relations (16) and 
(17) one has to choose Au = Av = Aw = 0 on the boundaries. Such boundary conditions 
would result in a (unique) solution if and only if the right-hand side of (18) is identically zero 
(and the solution itself is then identically zero), or no solution would exist at all. To obtain a 
solution, one may specify only one condition on each boundary. This in turn means that the 
residuals of the momentum equations cannot be kept unchanged, at least near the bound- 
aries, even for vanishing Reynolds numbers. By choosing a particular form of x (non- 
vanishing only at a single point), Brandt and Dinar3 constructed their distributive Gauss- 
Seidel (DGS) relaxation scheme. Any choice of x which satisfies (16) or (17), and (18) is 
equivalent to the assumption that the approximation at each step can be corrected by a 
velocity flow field which is irrotational. The irrotationality assumption is most erroneous near 
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the boundaries where the no-slip boundary condition cannot be satisfied. It is also inaccurate 
when the error is strongly rotational. 

Equation (18) is nothing more than the Poisson equation (and is independent of Re), and 
it can be relaxed efficiently by standard techniques (such as Gauss-Seidel relaxations). 

The explicit and the implicit assumptions which have been adopted in this relaxation 
procedure can be summarized as follows: 

A. The operator Q is linearized as if it had constant coefficients. 
B. The Q and the grad operators are assumed to commute. 
C .  The correction field is assumed to be locally irrotational. 

These assumptions are not always accurate enough, and the method might then diverge. 
Assumptions A and B are not good enough if there are large gradients in the flow field or in 
the error together with large Re. Assumption C is poor when the error is highly rotational. It 
must be emphasized that when It-' ,  in equation (15), is a fully averaging operator, then 
these assumptions do not cause degradation in the efficiency of the method provided that the 
initial error is not too large. 

4.3. Fine to coarse grid transfer 

When equation (18) is integrated (summed up) over any volume, the total mass flux out of 
that volume must be equal to the integral of the right-hand side of equation (18), i.e. the 
residual of the continuity equation. This compatibility condition must be satisfied also by the 
finite-difference approximations. This is the case indeed since the continuity equation is 
written in conservative form. If the compatibility condition is violated, no solution to (18) 
exists. 

Equation (18) may be written, for any volume 0 on grid k, as 
k 

Sk = R$h,kh,kh: 
iil 

where 
R = 8, (qu) + dY ( z p )  + 8,w 

When the sum is taken over the whole computational domain, s k  must vanish identically for 
all 1 S k S M, in order to be compatible with the boundary conditions on the finest grid. 

Figure 1 shows a basic computational cube of a coarse grid with spacings h,k-', ht-', h:-l 
and the 8 cubes of the fine grid, with spacings h:, h,k, h i ,  which describe the same region. 
Each velocity component (qk) is defined at the centre of the corresponding face of each 
elementary cube. These velocity components are transferred from the fine grid (k) to the 
coarse grid ( k  - 1) by an area averaging 

where Ak and Ak-l are the face areas, normal to the q-component, corresponding to the 
cubes of the fine and coarse grids, respectively. The sum is taken over the 4 elements of the 
fine grid which subdivide the corresponding surface of the coarse grid. 

The residual of the mass conservation equation is transferred by a volume averaging. We 
denote each volume element by V k .  The residuals, R k ,  are transferred to the coarse grid by: 
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i 
hk-1 
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hk 
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Figure 1. The transfer of the dependent variables from a grid k to a coarser grid k-1 

where the sum is taken over the 8 volume elements of the fine grid which subdivide the 
corresponding volume element of the coarse grid. By using relations (20) and (21) one can 
show that the sum in equation (19) is mesh independent for any sub-domain CR. In this way 
the compatibility condition is satisfied on all grids to the same accuracy as on the finest one. 

The transfer of the right-hand side of the momentum equations to coarse grids may be 
done by an averaging similar to relation (20). This type of transfer requires more computa- 
tional effort than a simpler 'injection' by which the residuals are transferred without 
averaging. However, an averaging often results in a faster convergence, despite the increase 
in computational work for each transfer, compared with injection (Section 5).  This is because 
the averaging operator is a smoothing operator by itself in contrast to injection which may 
accentuate aliasing effects. 

4.4. Effects of co-ordinate stretching 

The use of a non-uniform mesh in the physical space requires some care in the construc- 
tion of the MG solver. As already mentioned, the conservative form of the continuity 
equation should be used. Another important fact is that the efficiency of the relaxation 
operator is impaired. The MG solution procedure improves the total rate of convergence 
compared to other relaxation methods such as Successive Point (over) Relaxations (SPR), 
but the improvement depends strongly on the smoothing efficiency (of the high frequencies) 
of the relaxation operator. The particular choice of a relaxation operator depends on the 
type of problem and the range of parameters for which the solver is designed. 

Under the assumptions of the previous sections, one may consider the relaxation proce- 
dure of the momentum and continuity equations as decoupled. Each step can be evaluated 
separately and thus one may choose an optimal relaxation operator for the given geometry. 
The smoothing factor of relaxation operators can be estimated by using local mode 
analysis.2,3,5,6 and 9 With local mode analysis one considers the changes in the amplitudes of 
certain Fourier-components of the error, during the relaxation process. This analysis is valid 
only locally since all boundary conditions are ignored. Such an approach is most correct for 
high frequencies which contribute to large variations on short scales. During each relaxation 
step (of the momentum equations or equation (18)) an equation, with a principal part of the 
Laplacian, is treated. The smoothing of the Laplace equation in two space dimensions by 
some relaxation operators is discussed in Reference 9. It turns out that stretching of the 
co-ordinates deteriorates the performance of the smoothing of the SPR, whereas a properly 
chosen line relaxation (SLR) improves the smoothing as the mesh size ratio departs from 
unity. One can show (using similar principles to those in References 5 and 9) that the results 
for three-dimensional cases are similar. SPR is most cost-effective when the mesh-spacing 
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ratio is close to unity, whereas plane relaxation (SPLR), marching in the stretched co- 
ordinate direction, improves the smoothing as the mesh-spacing ratio departs from unity. 
However, when SPLR is done, one has to solve a two-dimensional problem which requires 
more work than the solution of a three-diagonal matrix in the SLR case. An efficient way of 
doing SPLR is by using an MG method for each plane during the (global) relaxation process. 
By such a procedure the effort for each plane relaxation sweep is equal to about 4 SPR 
sweeps. The convergence per relaxation sweep is improved by SPLR but the total work 
required might not be less compared to the theoretically less efficient SPR. On the other 
hand, for large mesh-Reynolds numbers combined with large errors and non-smoothing 
transfer to coarse grids, SPR may diverge in the MG mode whereas the SPLR works well. 

It should be pointed out that the character and treatment of the momentum equations can 
differ from that of the continuity equation for flows which are, at least locally, of boundary 
layer type. One can relax the momentum equations in the natural ‘time-like’ (streamwise) 
direction. The correction problem (18) which results from the continuity equation is always 
elliptic, with no bias in the flow direction. Thus, if the flow-field is not too complicated, 
SPLR may be applied only to the relaxation of the continuity equation, whereas the 
momentum equations may be relaxed by an inexpensive and natural marching method such 
as ADI. 

5.  NUMERICAL RESULTS 

The methods which are described above have been applied to compute the flows in straight 
ducts. Boundary conditions for the cases reported here are as follows: no-slip boundary 
conditions are applied on all the solid walls. At the inflow boundary the velocity profile is 
specified, whereas at the outflow boundary either Dirichlet or parabolic conditions are used. 

Stretching of the co-ordinates has been done only in the main flow direction (the z 
direction). The transformation is defined by a single parameter 6, namely: 

z = c+exp (y5)-  1 

The upstream boundary is at the location z = 0, and the downstream boundary is located at 
z = ZEND. The uniform mesh case is obtained by setting y = 0. 

In Figures 2-6 we compare some flow parameters with respect to the type of downstream 
boundary condition (Dirichlet or parabolic) and a range of Reynolds numbers up to 2000. 

In Figure 2 we consider the variation of w and its gradient w, (in the main flow direction) 
for 2 =s Re < 2000 with the outflow boundary located at a fixed distance (ZEND = 2). When 
Dirichlet boundary conditions are applied (Figures 2(a) and (c)), a boundary-layer-like 
behaviour near the outflow boundary is obtained, for large Re. The numerical solutions of 
these problems with parabolic boundary conditions result in smooth solutions (Figures 2(b) 
and (d)). 

In Figures 3-5 we consider the effects of the location of the outflow boundary (ZEND). 
From these figures the following is concluded: 

A. The boundary-layer-like behaviour of the solution (with Dirichlet boundary conditions) 
accentuates with increasing Re. 

B. The range of the solution for which a given accuracy is attained depends on the location 
of the outflow boundary and the given Reynolds number (with Dirichlet conditions). For 
large Re (2200) the solution can be considered to be accurate only in the first half of the 
duct (Figures 4(a) and 5(a)). 
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(C) (d) 
Figure 2. The variation of w and w, along the centreline of the duct. Fixed ZEND. 2 c R e  s2000 

C .  The solutions obtained with parabolic conditions applied at the outflow boundary are not 
sensitive to variation in ZEND for all the tested Reynolds numbers. 

D. In Figures 6(a) and (b) the velocity profiles at some cross-sections are plotted, computed 
with Dirichlet and parabolic boundary conditions, respectively. From the plotted results 
it may be concluded that the solution with Dirichlet conditions converges, as ZEND 
increases, to the solution with parabolic conditions. 

The rate of convergence of the MGM applied to SG and NSG formulations has also been 
studied. The transfer from fine to coarse grids is either averaged for all the equations (SG 
results in Table 11) or averaged only for the continuity equation (NSG results in Table I). The 
effects of the mesh-spacing ratio, h,/h ( h  = h, = h,,), the Reynolds number and the number of 
the levels in the MG procedure have been considered. In all the following cases only the SPR 
is used, except for those which are shown in Table 111. 

The rate of convergence is defined to be equal to the mean reduction of the (weighted) 
residuals per work unit. A work unit is equivalent to the effort needed to make a single 
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Figure 3. The variation of w and w, along the centreline of the duct. 1.0 C ZEND S 2.0. Re = 20 

relaxation sweep on the finest grid. In the work-count only the relaxation effort has been 
taken into account, whereas the transfer among the grids has been neglected. The computa- 
tions have been continued until the residuals have decreased by at least four orders of 
magnitude, and thus the rates of convergence in all the tables are close to the asymptotic 
rates of convergence of the methods. No initial approximation has been computed by coarse 
grid ~olutions.~ For practical problems, such initial approximations may be used, and the 
computation is terminated at earlier stages. Under such circumstances the convergence is 
faster, and the (asymptotic) rates of convergence which are given here can be considered as 
upper bounds for practical purposes. 

The sequence of grids and the number of intervals in each grid are: 

A: ( 4 ~ 4 x 4 ) ;  ( 8 ~ 8 x 8 )  
B: ( 3 X 3 X 3 ) ;  (6X6X6); (12~12x12)  
C: (6 X 6 X 6) ; (12 x 12 x 12) 
D: ( 4 ~ 4 x 4 ) ;  ( 8 X 8 X 8 ) ;  (16X16X16) 
E: (8 x 8 X 8) ; (16 x 16 x 16) 
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Figure 4. The variation of w and w, along the centreline of the duct. 1.0 S ZENDC2.0. Re = 200 

Table I1 displays the corresponding results with the SG formulation (fixed MGM with 

From the tabulated results and other numerical experiments, we conclude that: 
averaged transfers from fine to coarse grids) 

A. 

B. 

C. 

D. 

The SG version converges faster than the NSG version (owing to different treatment of 
the transfer from fine to coarse grids). However, it should be emphasized that even the 
NSG, with SPR, is much faster than single grid N-S solvers. 
The rate of convergence for a given set of parameters is not sensitive to the number of 
points in the finest grid. This means that the computational effort is practically propor- 
tional to the number of unknowns. 
The efficiency (with SPR) is best, for low Reynolds numbers, when the mesh-spacing 
ratio is close to unity. For large Re, the alignment of the relaxation direction of the 
momentum equations and the flow direction is important. 
For large mesh-Reynolds numbers, R e .  h,, convergence is better with the fixed form of 
the MGM and when averaging is used for transferring residuals to coarse grids. With 
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Table I. Rate of convergence of the NSG (adaptive) 
solver 

Re h,/h 0.5 1.0 2.0 4.0 

A 0.76 0.67 0.89 - 
0. B 0.85 0.74 0.88 - 

D 0.88 0.74 0-80 - 
A 0.76 0.69 0.89 - 

2. B 0.88 0.76 0.89 - 
D 0.91 0.76 0.80 - 
A 0.78 0.78 0.84 - 

20. B - 0.86 - - 
C 0.81 0.78 0.85 Div 
D 0.85 0.86 - Div 
E 
A - 0.98 0.98 Div 

200. C - 0.86 0.87 - 
E - 0.86 0.85 - 

0.84 - - - 

Div = diverged. 

large initial errors and large mesh-Reynolds numbers, the MG procedure may diverge. 
This is due to the crude linearization and the commutativity assumption between the 
non-linear and grad operators. 

The parabolic boundary conditions have been incorporated into the SG-MGM. The main 
flow component has been updated in each relaxation sweep and the residuals have been 
transferred to coarse grids according to relation (15). The total efficiency of the MGM with 
parabolic boundary conditions is about the same as that with Dirichler conditions. 

Some of the results which have been obtained with SPLR are shown in Table 111. The 
rates of convergence are based on SPLR equivalent work units which are equal to about 

Table 11. Rate of convergence of the SG solver 

Re h,/h 0.5 1.0 2.0 4.0 

A 0.69 0.60 0.82 0.90 
0. B 0.69 0.55 0.78 0.90 

D 0.70 0-55 0.76 0.87 
A 0-59 0.58 0.80 0.91 

2. B 0.60 0.56 0.74 0.89 
D 0.65 0.57 0-73 0-92 
A 0.65 0.54 0.72 0.88 

20. B 0.65 0.54 0.70 0.86 
D 0.68 0.54 0-72 0.83 
A 0.67 0.57 0.62 0.83 

200. B 0.71 0.59 0.64 0.81 
D 0.71 0-59 0.65 0.77 
A 0.67 0.56 0.56 0.80 

2000. B 0.72 0.60 0.60 0.78 
D 0.72 0.64 0.71 0.72 

The notation is the same as in Table I. 
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Table 111. Rate of convergence of the SG 
solver as function of the relative mesh- 
Reynolds number and the mesh-spacing ratio 

(SPLR used) 
~~ ~ 

Rate of 
Re Re.  h,/h h,/h convergence 

25 50 2.0 0.65 
100 4.0 0.68 
200 8.0 0.80 

50 25 0.5 0.65 
50 1 .o 0.63 

100 2.0 0.61 
200 4.0 0.64 
400 8.0 0.71 

100 50 0.5 0.71 
100 1.0 0.60 
200 2.0 0.59 
400 4.0 0.67 

4SPR work units. By using SPLR, results can be obtained, efficiently, even for large 
mesh-Reynolds numbers, stretching and large mesh-spacing ratios. The theoretically ex- 
pected fast convergence for large mesh-spacing ratios is not attained since for large Re .  h, 
the decoupling of the relaxation of the momentum and the continuity equations is not 
complete. 

In cases where the mesh-spacing ratio increases gradually, the SPR method converges 
well, even for a relatively large mesh-spacing ratio. In Table IV the rate of convergence for 
non-uniform NSG is shown. For Re = 20 the rate of convergence is constant for y S 1.5. For 
larger y, for which the mesh-Reynolds numbers are above 10, the efficiency of the method 
decreases, and for even larger values of y the MG procedure, without averaging the residual 
transfer, may diverge. 

Table IV. Rate of convergence of the NSG 
solver as function of the stretching parameter 

y (SPR used) 

Rate of 
Re Y h,/h convergence 

20 0.00 1.0 
0.25 1.3 
0.50 1.8 
0.75 2.5 
1 .oo 3.5 
1.50 6.9 
200 13.5 

50 0.00 1.0 
0.25 1.3 
0.50 1.8 
1.00 3.5 

0.75 
0.75 
0.73 
0.74 
0.76 
0,76 
0.82 
0.78 
0.76 
0.78 
0.83 
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6. CONCLUDING REMARKS 

The MGM for the solution of the Navier-Stokes equations has been shown to be efficient 
and reliable. The current SG formulation converges faster than the corresponding NSG 
algorithm because it uses fully averaged residual transfer from fine to coarse grids. The 
MGM converges well with SPR, as long as the mesh-spacing ratio is not too large (and for 
large Re, if the initial approximation is not too bad). Large mesh-spacing ratios can be 
treated well by SPLR, and these are cost-effective for large ratios when SPR looses its 
smoothing efficiency. 

The choice of boundary conditions is important and depends on the extent of the 
computational domain and the Reynolds number. Parabolic boundary conditions which have 
been incorporated into the MGM allow the reduction of the computational domain, which in 
turn means that the number of nodal points and mesh non-uniformities may be reduced. The 
methods presented here need only the same order of computational time as the globally 
parabolized methods. The globally parabolized methods, on the other hand, are not 
uniformly valid in contrast to the current three-dimensional N-S solvers. 
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